Simultaneous Approximation of a Set

Charles B. Dunham
Computer Science Department, University of Western Ontario, London, Ontario, Canada N6A 5B9

Communicated by R. Bojanic
Received September 30, 1974

Abstract

A family in a linear space is to be simultaneously approximated by a finitedimensional linear subspace with respect to a norm. Existence of a best approximation is established. Characterization and uniqueness results are obtained. Discretization of the family can be employed to get a best approximation.

Let \mathscr{F} be a linear space with norm . Let $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ be a linearly independent subset of \mathscr{F} and define

$$
L(A)=\sum_{k=1}^{n} a_{k} \phi_{k} .
$$

The problem of approximation is: For a given nonempty subset F of \mathscr{F}, find a parameter A to minimize

$$
e(F, A)=\sup \{|f-L(A)|: f \in F\}
$$

Such a parameter A is called best and $L(A)$ is called a best approximation to F. This is a generalization of the classical problem of linear approximation with respect to a norm, in which F consists of a single element f.

The omitted proofs of results in this paper use arguments similar to the classical ones for the case of F a single element.

One of the first to consider this general approximation problem was Golomb [7, pp. 264ff]. It has also been considered by Laurent and Tuan [8] and for F a pair by Goel et al. [6]. A related approximation problem is that of approximation by all of $\mathscr{\mathscr { F }}$, the problem of centers [9].

A case of special interest has been the case in which || || is the Chebyshev norm. The first widely distributed result on this was by the author [5]. Laurent and Tuan cite two neglected earlier papers by Golomb and Remez. Diaz and McLaughlin extended the author's results in [2] and studied complex linear Chebyshev approximation in [3]. Nonlinear simultaneous Chebyshev approximation has been studied by Blatt [1].

The problem of simultaneous approximation arises in approximation of a function (weakly) dependent on a parameter or parameters. For example. let h be a function on $X \quad v$. Let us define

$$
g_{y}(x) \cdots h(x, y), \quad x \in X, \quad y: Y
$$

and set $F=\left\{g_{y}: y \in Y\right\}$. In the case that h is measured experimentally and the value of the parameter y is difficult to measure, we may know the family F much better than h. In the case h is approximated by a function of x only. it seems appropriate to approximate the family F simultaneously. In the case that the value of the parameter when the measurement was taken is unknown, we have effectively a multivalued function g of x, and simultaneous approximation is the only possible approach.

This approach is particularly suitable for Chebyshev approximation of a function of several variables by functions of fewer variables. Suppose we wish to approximate h, a function of $X \quad Y$ by a function of X. Let s be an approximant and F be as in the preceding paragraph, then

$$
h-s, \sup f \quad s, f \in F
$$

Motivation for studying this problem is also given in [7. pp. 264 ff : 8, p. 138: 9, p. 283].

It can be shown that $e(F, A)-e(\bar{F}, A)$, where \bar{F} is the closure of F. Hence there is no loss of generality in considering F closed.

Theorem. Let F be a bounded nonempty set, then there exists a best approximation to F.

Theorem. The set of best coefficient lectors is closed, bounded, and concex.

Corollary. e (F, \cdot) is a convex function.
Use of a routine for minimizing a convex function is a general approach to computing best approximations. In some cases this is the only known approach.

Let $M(F, A)=\{f: f \quad L(A)=e(F, A)\}$.
Theorem. Let F be compact. A necessary and sufficient condition for A to be best to F is that A is best to $M(F, A)$.

Proof. Sufficiency is obvious. Suppose A is not best to $M(F, A)$. Then there is a coefficient vector B such that $e(M(F, A)), B) \quad e(M(F, A), A)$. Hence

$$
f \quad L(B) \quad f \quad L(A) . \quad f \because M(F, A)
$$

By continuity there is an open cover U of $M(F, A)$ such that
(i) $\|f-L(B)\|<\|f-L(A)\|, \quad f \in U$
(ii) for $0<\lambda \leqslant 1$ and such f,

$$
\begin{align*}
\|f-L(\lambda B+(1-\lambda) A)\| & \leqslant \lambda\|f-L(B)\|+(1-\lambda)\|f-L(A)\| \\
& <\|f-L(A)\| . \tag{1}
\end{align*}
$$

If U contains all of F, A is not best to F. Otherwise let $V=F \sim U$ be nonempty. As U is open, V is a closed set. Let

$$
\eta=\sup \{\|f-L(A)\|: f \in V\}
$$

then as V is compact, there is $f \in V$ for which the supremum is attained and since $M(F, A) \cap V$ is empty, $\eta<e(F, A)$. There exists $\mu>0$ such that $u\|L(B-A)\|<e(F, A)-\eta$. We have for $f \in V, 0<\lambda \leqslant \mu$,

$$
\begin{aligned}
\|f-L(\lambda B+(1-\lambda) A)\| & <\|f-L(A)\|+\|\lambda L(B-A)\| \\
& <\eta+e(F, A)-\eta=e(F, A) .
\end{aligned}
$$

Combining this with (1) we have for all λ in $(0, \min \{\mu, 1\}]$

$$
\|f-L(\lambda B+(1-\lambda) A)\|<e(F, A), \quad f \in F
$$

and by compactness, $e(F, \lambda B+(1-\lambda) A)<e(F, A)$, proving the theorem.
It is a consequence of the theorem that if $M(F, A)$ consists of a single element f and $L(A)$ is a unique best approximation to $f, L(A)$ is a unique best approximation to F.

Theorem. Let \|\| be strict and F compact. Then a best approximation is unique.

Let us now consider some special norms. The L_{p} norms are strict for $1<p<\infty$ and are covered by the above theorem. The Chebyshev norm is not strict and nonuniqueness can occur. The papers [1;5] should be consulted. In the case of the L_{1} norm, it appears that nonuniqueness can occur easily.

Theorem. Let \int be the integral on X. Let $F=\left\{f_{1}, f_{2}\right\}, f_{1} \leqslant f_{2}$. If $f_{1} \leqslant L(A) \leqslant f_{2}$, and $\int\left(L(A)-f_{1}\right)=\int\left(f_{2}-L(A)\right)=\int\left(f_{2}-f_{1}\right) / 2$, then $L(A)$ is a best L_{1} approximation to F.

In the case where f_{1} and f_{2} are different constants and L is a polynomial approximating function of degree $\geqslant 1$, there are many such A 's. Carroll [4]
gives a sufficient condition for best simultaneous L_{1} approximations to be unique.

Let

$$
\begin{aligned}
d\left(F_{1}, F_{2}\right) & =\sup \left\{\inf f_{1} \cdots f_{2}: f_{2} c F_{2}: f_{1} \in F_{1} .\right. \\
\operatorname{dist}\left(F_{1}, F_{2}\right) & -\max d\left(F_{1}, F_{2}\right) d\left(F_{2}, F_{1}\right)
\end{aligned}
$$

We say $\left\{F_{k}\right\} \rightarrow F$ if $\operatorname{dist}\left(F, F_{k}\right) \rightarrow 0$.
Theorem. Let $\left\{F_{k}\right\} \rightarrow F$ and A^{k} be best to F_{k}. Then $\left\{A^{k} ;\right.$ has an accumulation point and any such accumulation point is best to F.

A case of particular interest is where F_{l} is a sequence of subsets of F such that for all $f \in F$, there is a sequence $\left\{f_{k ;}\right\} \rightarrow f, f_{k} \in F_{k}$. In this case it is seen that $\left\{F_{k}\right\} \rightarrow F$ and the theorem can be applied. The case where $\left\{F_{k}\right\}$ is a sequence of finite sets is of practical interest, as computing a best approximation relative to a set F of functions is easier if F is finite. The process of replacing approximation of infinite F by approximation of finite F_{6} is a process of discretization, which is used extensively in many other approximation problems.

References

1. H. P. Blatt, "Nicht-Lineare Gleichmässige Simultanapproximation," Dissertation. Universität des Saarlandes, Saarbrücken, 1970.
2. J. B. Diaz and H. W. McLaughlin, Simultaneous approximation of a set of bounded real functions, Math. Comp. 23 (1969), 583-593.
3. J. B. Diaz and H. W. McLaughlin, Simultaneous Chebyshev approximation of a set of bounded complex-valued functions, J. Approximution Theory 2 (1969), 419-432.
4. M. P. Carroll, Simultaneous L_{-1} approximation of a compact set of real-valued functions, Numer. Math. 19 (1972), 110-115.
5. C. B. Dunham, Simultaneous Chebyshev approximation of functions on an interval. Proc. Amer. Math. Soc. 18 (1967), 472-477.
6. D. S. Gofl, A. Holland, C. Nasim, and B. N. Sahiver, On best simultancous approximation in normed linear spaces, Canad. Math. Bull. 17 (1974), 523 -527.
7. M. Golomb, Lectures on Theory of Approximation, Argonne National Laboratory, 1962.
8. P. J. Laurent and P. D. Tuan, Global approximation of a compact set by elements of a convex set in a normed space, Numer. Math. 15 (1970), 137-150.
9. J. D. Ward, Chebyshev centers in spaces of continuous functions, Pacific J. Math. 52 (1974), 283-287.
10. F. Deutsch, review of $6, \# 13556$, Math. Reviews 51 (1976), 1904.
11. A. S. Holland, B. N. Sahney, and J. Tzimbalario. On best simulaneous approsimation, J. Approximation Theory 17 (1976), 187-188.
12. A. Brondsted, A note on best simultaneous approximation in normed linear spaces, Canad. Math. Bull. 19 (1976), 359-360.
